
0

Naval Ordnance Safety & Security Activity
Software Security Assessment Tools
Review

1

Safety-critical systems
�Main functions: monitoring, diagnosis, control of physical systems

�Extraordinary conditions = hazards (accidents)

�Consequences: potentially catastrophic, even fatal

�Examples:

– Embedded: onboard vehicle controllers/computers,
medical devices, process controllers, robots

– Non-embedded: SCADA and DCS, air traffic control
systems, telematic monitoring/diagnostic/control
(OnStar, etc.)

– Hybrid: weapons systems

2

Security critical systems

�Main functions:

– sensitive/privacy information processing,
transmission, storage;

– network communications;

– security (detection, protection, response) for
data, software, networks, physical facilities

�Extraordinary conditions = threats (attacks/
exploits; errors with exploitable results)

�Consequences: depend on nature of purpose,
users, data, resources

�Examples:

– Embedded: network controllers, facility security sensors/alarm systems,
Trusted Platform Modules (TPMs)

– Non-embedded: operating system kernels and file systems, virtual machine
monitors, information systems/applications, communications
systems/applications, computer and network security systems and sensors

– Hybrid: networking devices, security appliances, cryptographic devices, ATM
machines

3

Terminology

� Extraordinary condition = Any condition deviating from those under which
software is designed to operate

Divergences

� What constitutes an extraordinary condition

� What is at stake if software fails due to an extraordinary condition

� Level of tolerance for failure

Convergence

� Shared need for software to remain dependable under extraordinary conditions

Using tools to begin integrating safety and
security

4

Security of safety-critical software

Must be addressed at three levels

1. Functional

� threats to software’s own availability (denial of service) and integrity
(corruption, tampering, malicious code)

2. Data

� threats to integrity of inputs, outputs (tampering, substitution, rerouting,
deletion, malicious code insertion, disclosure)

� threats to information processed, stored, transmitted (same as
inputs/outputs)

3. Execution environment

� threats to availability, integrity of environment components

� threat of resource theft

5

Security of safety-critical software cont’d

System vs. software level security

� System: focus is on

– external interfaces/interactions

• between system components

• between system and other systems

• between system and users

� Software: focus is on

– internal workings and

– external interfaces/interactions

• between software components/units/modules

• between software and execution environment

• between software and users or process

6

Tool Categories

�The categories of tools
evaluated and detailed in
this paper are:

�Static Analysis

�Source Code Fault
Injection

�Dynamic Analysis

�Architectural Analysis

�Pedigree Analysis

�Binary Code Analysis

�Disassembler Analysis

�Binary Fault Injection

�Fuzzing

�Malicious Code Detectors

�Bytecode Analysis

7

Methodology

�Open source information

– High-level vendor-provided data

�Which stage of the software development life cycle targets

– Discussion of additional stages if applicable

�Required skills

– Higher maturity level of tools indicates less of a reqiured skillset

�Benefits and drawbacks

8

XXXXXXXTesting methodology

XBytecode

XX+Binary

X%XXImplementing language

XXX#Underlying development methodology

XUnderlying source code

Required Skills (Understanding of…)

XX*XXX*X*XXXXXAcquisition

XXXXXXXXXXXProduction

XXX*X*XXXXX*X*XTesting

X*XXXXXX*XXXX*Implementation

X*Design

XRequirements

When to Use

Byte Code
Analysis

Malicious
Code

Detector
Fuzzing

Binary
Fault

Injection

Disassembler
Analysis

Binary
Code

Analysis

Pedigree
Analysis

Architectural
Analysis

Dynamic
Analysis

Source
Code
Fault

Injection

Static
Analysis

Code
Scanning

Summary of Evaluation
Key:
X*- To be most beneficial X+ - In some cases
X% - When possible X# - e.g., compilation

9

XXXXXXXX+Guaranteed the analysis is performed on the actual
product

XXXXXXXXNo disassembly

XReduces the amount of testing necessary

XXXXImproved accuracy and coverage

XXXXXXXXNo need for source code

XXIncreased accuracy

XXXIncreased test coverage

XXChecks for good programming style

XXAutomates repetitive and tedious aspects of source
code security audits

XXXXXXXRechecks legacy code

XXXEducates developers about secure programming

XXXXXXXXXXXReduces cost over system life

Benefits

Byte Code
Analysis

Malicious
Code

Detector
Fuzzing

Binary
Fault

Injection

Disassembler
Analysis

Binary
Code

Analysis

Pedigree
Analysis

Architectural
Analysis

Dynamic
Analysis

Source
Code
Fault

Injection

Static
Analysis

Code
Scanning

Summary of Evaluation
Key:
X*- To be most beneficial X+ - In some cases
X% - When possible X# - e.g., compilation

10

XLimited to a single language

XXXXAdditional preparation

XXXXXXAdditional analysis

XReliance on a primary vendor

XLicensing concerns

XXXLack of tool availability

XRequires use of open source software

XXXXXRequired expertise

XXXXThorough understanding of the software

XXXXXXXNo architectural-level flaws

Drawbacks

Byte Code
Analysis

Malicious
Code

Detector
Fuzzing

Binary
Fault

Injection

Disassembler
Analysis

Binary
Code

Analysis

Pedigree
Analysis

Architectural
Analysis

Dynamic
Analysis

Source
Code
Fault

Injection

Static
Analysis

Code
Scanning

Summary of Evaluation
Key:
X*- To be most beneficial X+ - In some cases
X% - When possible X# - e.g., compilation

11

Further Work

�The Tools Report is available at:

– https://buildsecurityin.us-cert.gov/swa/procwg.html

�Safety and Security Considerations for Component-Based Engineering of
Software-Intensive Systems

– https://buildsecurityin.us-cert.gov/swa/procwg.html

� In-depth review of specific security tools

– Review the capabilities of tools

– Review their applicability to the safety community

�Safety and Security Test Toolkit

12

QUESTIONS?

�Available for public comment at:

– https://buildsecurityin.us-cert.gov/swa/procwg.html

